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SUMMARY

An approximate method for the calculation of compressible turbulent
boundary layer with heat transfer and arbitrary pressure gradient is pre-
sented. The wmethod involves the momentum integral asnd moment-of-momentum
equations as simplified by using Stewartson's transformation. The
Ludwieg-Tillmenn skin-friction relation is used in these equastions in a
form suitable for compressible flow with heat transfer through application
of the reference enthalpy concept. A tentative extension of Reynolds
analogy is suggested for estimating heat-transfer effects.

The method, as applied to insulated surfaces, is quite well Ffounded
but, for noninsulated isothermel surfaces, depends on a number of specu-
lative assumptions. These assumptions are qualitatively proper, and it
is hoped that they will yield reasonsble quantitative results. The
detailed application of the method for practical calculations is described.

INTRODUCTION

In the absence of any rigorous method, various semiempirical pro-
cedures have been developed for incompressible turbulent-boundary-layer
calculations. An excellent description of these procedures is given in
reference 1. In brief, for flows with zero pressure gradient, the
Kédrmén momentum integral equation is utilized together with arn assumed
boundary-layer-velocity profile, usually a power-law profile, and one of
several empirical skin-friction relations. For flows with pressure gra-
dient, an additional or auxiliary equation is regulired to account for the
effect of pressure gradient on the boundary-layer-velocity profile. A
skin-friction relation compatible with the streamwise pressure gradlent
should be employed.
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Although some procedures use an eumplirical suxillary equation,
Tetervin and Lin (ref. 2) have suggested the moment-of-momentum equation
as an auxilisry equation. The moment-of-momentum equation is obtained
by multiplying the integrand of the moumentum integral equation by a
distance normal to the surface and then 1ntegrating wilth respect to that
distance. .

These calculation methods generally require the simultaneous solution
of two differential equations, the Kdrmén momentum equation and the
auxiliary equation. Maskell (ref. 3) has developed a simpler method in
which the momentum equation is replaced by an empirically determined
approximetion which is directly integrable and thus determines the momentum
thickness. The profile shape parameter is obtained from an empirical
auxiliary differential equation. The Ludwleg-Tillmann skin-friction
formule (ref. 4) is used to calculate the skin-friction distribution and
t0 determine an approximate separation p01nt for flows wlth adverse pres-
sure gradient.

The present report describes an approximate method for the calculation
of compressible turbulent boundary layer with heat transfer and pressure
gradient. The momentum and moment-of-momentum integral equations for com-
pressible flow are first simplified by using & form of the Stewartson
transformation (e.g., see ref. 5). The possibility of using the Stewartson
transformation for turbulent flow was pointed out by Van Le (ref. 6).

In fact, Englert (ref. 7) and Mager (ref. 8) have respectively applied
the Stewartson transformation to the Truckenbrodt (ref. 9) and Maskell
(ref. 3) methods, which enables the calculation of compressible turbulent
boundary layers over insulated surfaces. In the present report, the
Ludwieg-Tillwann skin-friction relation is used in a form suitable for
compressible flow with heat tramsfer through application of the reference
enthalpy concept (ref. 10). An approximetion obtalned from reference 3
for the shear-stress distribution through the boundary layer and the
power-law velocity profile are used to simplify further the moment-of-
momentum equation. The location of turbulent separation is identified

as that where the skin friction, when sensibly exirapolated, becomes zero.
Maskell has shown this procedure to be in good agreement with experiment
for flows over airfoils where the form factor increases rapidly near
separation and thus causes a quick fall of skin friction in a small in-
crement of longitudinal distance. Where separatlon does not occur so
rapidly, the proposed method may yield large errors in separation location.

A speculative extension of Reynolds analogy 1s used to estimate
heat-transfer effects for isothermal surfaces. This extension was sug-
gested from the results obtained in reference 1l for lamlner-boundary-
layer flows with heat transfer and pressure' gradient.

Ly
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BOUNDARY-LAYER INTEGRAT, EQUATIONS

A brief description of the essential steps and assumptions involved
in the proposed calculation method will now be presented. The bulk of
the development is for & Prandtl number of 1.0. However, in the section
entitled Heat Transfer, a modification is suggested to include the effect
of a Prandtl number different from 1.0. All symbols are listed in
appendix A.

The transformed momentum and moment-of-momentum integral boundary-
layer equations, respectively, are:

[l =] T

a6 6., du
tr tr e2+Hi+ 0 +tr@= L
&® U, & Bir R & -~ (ae Z 2
- " 2o ao) e
(1)
2 A
dy 1 dUg Hy(B; +1)7(H; - 1) o hg
&~ U X z J1+(Hi+1)et'ro Iy A
A
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- L _1)y
B2(E; +1)62 . J4 \Po
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T (B - 1)
vo i H, - (H; + 1) X a% (2)
o \2 i i Ty A
Py ?.9(..3) Uzet o .

The development of these eguations, which apply to flows with axial sym-
metry, 1s outlined in asppendix B. 7For two-dimensional plane flows, the

term %% in equation (1) vanishes. Equations (1) and (2} describe

the variation of a "transformed" mouwentum thickness defined as

A
By =/ U ( - i) ay (3)
o Ue Ue
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"t

and an "incoumpressible" form factor

Hi = (4)

with the transformed longitudinal variable X for a speclfied external
velocity distribution Ug(X). A distinction is made between the trans-

formed and incoupressible form factors since the transformed form factor
for a coumpressible boundary layer with heat transfer is (obtained from

appendix C, ref. 12)
A - A-hs
1 - dy + <—— -~ %) ay
o( UE) o \Bo

=
r et

Hy

=Hi+

(5)

Physically, Htr is the form factor of a noninsulated boundaery layer at
Mach nuwber zero and includes the variation of density with temperature.

For boundary layers over insulated surfaces,- the transformed and incom-
pressible form factors are identical.

In order to solve equations (1) and (2) a skin-friction relation
must first be selected. The Ludwieg-Tillmenn relation (ref. 4) has been
chosen because of its applicability to flows with pressure gradients.
This relation, however, does not allow the skin-friction coefficient %o
equal zero and, therefore, is in error near separation. This deficiency
can be overcome in a practical calculation as shown in the section
entitled Skin Friction. As extended to compressible flow (see appendix
C), the Ludwieg-Tillmann relation in terums of transformed quantities is

T ant -0,.268 t 0.732/¢ 10.268
Cf = T ¥ = 0,246 e-l.SGJ_Hi (—-——Me 0 tr) e) (i) (6)

3 peuZ Vo tref, ’GQ

This analysis assumes that the fluid Prandtl number is 1.0. The defini-
tion of reference enthalpy as obtained frowm reference 10 is

h_;’li’?.=%<hﬁ+1)+o.zz<;—a‘-’-) (1)

e e (=}

2809
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where for Pr = 1.0, h,, = hg. The temperature t,.r 1s evaluated at

the reference enthalpy. Before the solution of equations (1) ard (2) 1is
posslible, some assumptions are still required concerning the shesring
stress and temperature profiles within the boundary layer.

For zero pressure gradient, dEi/dX is known to be negative. This
requires from equation (2) that

1
X d(%) > __EE__
OTW Hi+l

The present analysis uses the following simple relation,'Valid for B

1.25< H; < 1.40:
1
H
T Y 1 .
/o % dx) - 1o i ®)

This relation was obtained by matching with the equivalent numericsal
values of Maskell (ref. 3). Equation (2) appears ussble even for flows
with large pressure gradients inasmuch as the pressure gradient term in
equation (2) should then far outwelgh the friction term (eq. (8)). This
is somewhat verified by the agreement between experiment and theory in
reference 12 where the pressure gradient term alone is used to describe
shock-induced separation. Equation (8) itself is, of course, incorrect ;
near separation where Ty = O.

The terms in equation (2) involving enthalpy integrals are evaluated
by drawing an analogy to their values for laminasr flow. The results of .
reference 5 show that (from £ig. 7 of ref. 5) a zero transformed form —
factor is obtalned for a flat plate at asbsolute zero surfasce temperature,
which implies a zero displacement thickness for Mach nuwber zero flow
with a surface temperature of absolute zero. This is & consequence of
the similarity between velocity and temperature profiles for the laminsar
flat plate. Also to be noted from figure 7 of reference 5 is that the
curves of transformed form factor for insulated and cooled surfaces are
almost parallel to each other when plotited agzeinst = pressure gradient
perameter. For turbulent flow, 1t is assumed that the qualitative behavior
is similar to that for laminar flow. This results in the following
expression for transformed form factor:

fe-g)e [T =

e = ° (w1 @

r
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where Hi,fp is the incompressible form factor over a flat plate. Thus,

/:(%% ) 1) " (% ) 1) He, 0w (10)

Using equation (10) and manipulating algebraically with the aid of the

N
(%) yield the following identity:

Power-laew veloclty profile nte

Ue

A
hs ofbw _ .\ Biep -1
A (ho ) Y 4Y = A (ho ) Z(Hi,fp 3 (11)

By using relations (6), (8), (10), (11), and (B4), equations (1) and
(2) can be rewritten in terms of the physical longitudinal distance and
Mach number in the following manner:

AO¢p Ogr dMe by Otr ar
il Tl [2+Hi+<35- )Hi,fp]+TE§=A (12)
2
dHy aMg [y (Hy +1)7(Hy - 1) VA 1_<ﬁi+l Hy pp- 1
& T Mg =L 2 "\Bo " YLE + 1 AR - \Hy gp+ 5
-0.03 Hy(EZ - 1) 2> (13)
i( i ) etr

where

-0.268 0.732 3.268

-1.561Hj Maanf t t

A=0.123 e (_—V_—EE) ( e'> (_E) (14)
0 trer to

For incompressible flow, equations (12) to (14) become

a6, 65 au o - Ugby) 0268
4 0y dUg i &R 1.561H; ( ef1
ax + E T (2 + Hi) + ? -ax— = 0.123_.:6" "—VB— (15)
and
) 2
—L=_0.031 (H2 .1)0:123 e 1,561H1(Ueei "0-288 1 dUel-Ei(HiH)(Hi - 1)]
dx ¢ iiHg ei vo / Ug dx L 2

(16)

2597 1
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Equation (15) is the usual momentum integral equation and is identical to
that of Maskell (ref. 3) except for the present inclusion of axial sym-
metry. The moment-of-momentum equation (18) differs only slightly from
that of Maskell which is

aHy f(Hy) o1+561H1 aug
| - omes v oo & 8(E1)
(Ueel)
1
vo

The first term on the right side of equation (18) has been matched with
Maskell's values for 1.25 <E4 < 1.40, while the agreement between the

last term of equation (16) and Maskell's empirical relation 1s seen in
figure 1 to be quite good. Thus, it is felt that the present method is
in agreement with that of Maskell for incompressible flow, and, therefore,
it is also expected to agree with the wethod of Mager (ref. 8) for com-
pressible flow over insulated surfaces.

The additional assumptions (eqs. (9) to (11)) made to include non-
insulated surfaces are of a speculative nature. However, since they are
qualitatively proper, it 1s hoped that they will also yleld reasoneble
quantitative estimates of the turbulent-boundary-layer characteristics
over noninsulated surfaces.

CAT.CULATTON PROCEDURE

The gquantities generally desired in a boundary-layer calculation are
the boundary-layer integral thicknesses, skin friction, and heat transfer.
In the present procedure, it is first necessary to calculate the
transformed-mouentum-thickness distribution. Anyone interested only in
estimating heat-transfer rates can proceed directly tc the section
entitled Heat Transfer after first calculating the transformed-momentum-
thickness distribution.

Transformed Momentum Thickness

The following form of equation (12) (derived in appendix D) is used
for the calculation of transformed momentum thickness:
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an8,.\0.2155 0.2155
e>0° tr 1.2155 ap8tr 1.2155
[e'l::l:‘<M Vo ) l'g R :I = [e‘brclievo ) ME R

X

Xl -
X
£ 0.732
< e ) gl 2155
tref
= 0.01173% o AEE dx (17)
€ £\ D.268
0
(te>
X1
where
]:x,W .
B=4.2 + 1.2155 Hi,fp(ga -1 (18)
Dper 1 <hw ) <haw
==|— + 1] +0.22 {7/ -
b, - 2 \be b (7)
and
how r -1 1/3
o=l Mi (Pr)_ ot (19) -
The quantities ag and VYo are, respectively, the velocity of sound and -

kinematic viscosity evaluated at the stagnation conditions of the locsal
external stream. The temperature tpef 1is evaluated at the reference
enthalpy hpef. The local external Mach number Me and radius of exi-
symmetric body R should be known as functions of x in order to per-
form the calculation indicated in equation (17). For two-dimensional
flow, the radius R is a constant. Thus, the quantitiles Rl'2155
inside and outside the integral in equation (17) cancel. The flat-plate
incompressible form factor Hj,pp may, for most purposes, be teken as
1.3, approximately that of a 1/7 power velocity profile.

In equation (17) the distence xj 1s the starting point of the cal-
culation. If x; 1s taken to be the transition location, then the

transition value of 6ty would be obtained from a laminar-boundary-layer

calculation (by using, for exemple, the method of ref. 5). For cases

where the flow is predominantly turbulent, it is usually sufficlent to
jgnore the laminar region and take the origin of boundery-leyer development
at the leading edge (x3 = O). For this latter situation, equation (17)

becomes --

-

Q0%
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(,G )o 732
1.2155 _ 0.01173 bref 1.2155
Otr = 0.2155 & xx

G‘é) yB+0- 2155, 1.2155 O (:_: )3.268
(20)

Again, for two-dimensional flow, the quantities R.‘L'Zl55 in equation
(20) should be omitted.
Transformed Form Factor

After the transformed momentum thickness is obtalned, the quantity
Hy can be calculated by numerical integration of equation (13):

= Me:e[(> (2, _lﬂfl (-9 Y () |t

-0.03 B; (& - 1) % (13)
r

where

-0.268 0.732 ,, .3.268
-1.561H 8 t T
A = 0.123 o 1rO63HL (——-——Meao tr) ( < ) (—e) (14)

Yo Trer to

For flow over an insulated surface, equation (13) can be alternately
written as

£(H;)

]
H
-\
20
[
‘e
|—-l
S

e (21)
where the function

i) 1/(Hg+1)

Fy) (22 - 1Y%, +1) ° (22)

is that used 1n réference 12 and for convenience iz plotted in figure 2
herein. If friction effects are omitted in equation (21), there results
the relation applied in reference 12 to shock-induced separation.
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The initial value of Hj for flow over. sharp or pointed bodies may
be taken as Hj, fp (suggested as 1. 3) For blunt bodies, the value of
Hi &at the stagnation point is somewhere between 1.0 and 1.3. A value

of 1.1 1is suggested. Sample calculations in references 3 and 7 show that
a poor guess of the initial value of Hi 1is inconsequential, since the

form factor will tend ta reach- its proper velue 1n the first few steps
of calculation. An error greater than 0.1 in the initial value of Hj

should be avoided.

Compressible Momentum Thickness

As shown in appendix C of reference 12, the compressible momentum
thlckness is obtained by using the relation

_ 5 o .
6 = Qtr(l + I Mg) (23)

Skin Friction

From equation (6),
Yy -1
Cp = 2A<l + LL Mﬁ) (24)

where the guantity A 1is given in equation (14). In an adverse pressure
gradient flow, the point of turbulent separation is obtained by sensible
extrapolation to zero of the skin-friction coefficients calculated from
equation (24). This is shown in the following sketch:

Calculated
curve

Separation

Extrapolation point

~N\

X

Since the Ludwieg-Tillmenn formula camnot give Cp = O, it is probably
in error for values of Cy close to zero. Maskell (ref. 3) suggests that

the extrapolation be started where Cp is falling rapidly and be continued
to Cg = O without an inflection point as shown in the sketch._

2597
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Coupressible Form Factor

As shown in eppendix C of reference 12, the compressible form factor
can be expressed as

H = Htr(} + Lot ) P W (25)
where
Hip = H; + (%’ - 1) Hi rp (9

Equation (25) represents well the experimental data of references 13 and
14 as shown in figure 3. It is also in good agreement with the curve of
reference 15 for a 1/7 power profile.

Beat Transfer

In reference 11, it is shown for leminar flow that the ratio of a
skin-friction parameter to a Reynolds analogy parameter, which appears
in the relation for heat transfer, is almost invariant with pressure
gradient. This ratlo was then evaluated for zero pressure gradlent. For
laminar flow, this simplification yields good results except for flows
over heated and moderately cooled surfaces with large favorable pressure
gradient. It is assumed herein that the corresponding ratio of skin-
friction parameter to Reynolds analogy parameter for turbulent flow

e 15811 /10, /(s5t) (Pr) ] behaves similarly; that is, it is essentially
£ ? b
invariant with pressure gradient and is well spproximated by its zero

pressure gradient value of e'l‘SSIEi)fP/Z(Pr)l/3. The last expression

makes use of the Colburn flat-plate analogy Cp = (St/Z)[IPr)'Z/SJ. The
Reynolds analogy for turbulent flow is then written:

-2/3 el.561(Hi-Hi,fP)

St = %’1 (Pr) (26)

The veriation of Stanton number with Prandtl number of (Pr)'z/3 is
proper for zero pressure gradient. Although for laminar flow the exponent
of the Prandtl number varies somewhat with pressure gradient, it is felt
that for turbulent flow the exponent would vary less. In the absence of
more precise information, the -2/3 exponent will be used with pressure
gradient. From equations (6) and (26) the expression for Stanton number
for a compressible turbulent boundary layer is then
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£ 1\0.732
0.123 ¢~ L-961H1, fp ( e ) :
8t = 0.268 tgegea (Pr)r—'z‘s (27)
EQ ) Meagftr\
te Yo

Since the skin friction has been eliminated from equation (27), the heat
transfer can be directly estimated ounce the transformed momentum thickness

1s knowmn.

The heat-transfer rgte to the wall is obtained by using the following
relatioun:

q = (8t)peue(bay - hy) (28)
vhere _
hg, = he(l + (Pr)i/ei. r-2i ME) (29)

SPECTAL CASES
The results of the present method for zero pressure gradient flow

and stagnation-point flow will be described in detail. Both the two-
dimensional and axisyumetric cases are considered. The value of Hi,fp

for these cases is taken as 1.3.

Zero Pressure Gradlent Flow - -

Flat plate. - For flow over an isothermal flat plate (from eq. (20)),

0.01173 ,t-—-te 0.732
. X
61.2155 _ ( ref) (30)
Yo te
While the transformed form factor 1is more strictly described by the
relation
2
dHy Hy(HY - 1)A
5= = -0:0 o (31)
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it usually suffices to assume H; = Hi,fp = constant. From equations
(23) and (30),

£ 1\0.602 /£ .\0.311
0.0259 <t S ) (%9) x0.823

6= Fet Moag 0.577 (32)
(“0>

and from equations (14), (24), and (30),

0.22 0.571,, .0.452
8, t t
Cp = O. o&as(M;e 0 ) <F e‘) (gg) (33)
Yo ref e

The Stanton number relation from equations (27) and (30) is

-0.22 0.571 0.452
o L% '2/5
trer . (Pr)ref (34)

e
Cone surface. - The thicknesses and skin-friction and hesat-transfer

parsmeters will be written out in complete form and will also be compared

to the flat-plate values. With R = x sin 6, the transformed momentum

thickness is given from equation (20) by

£ 0.732
e
0.01173 C ) p'd
sref,

0.2155
2.2155(9_0. Mg-les(t_O)
Vo te

MeaoX)

8t = 0.043<
Vo

1.2155
6tr =

5.260 (35)

The variation of transformed form factor is more correctly given by equa-
tion (31) but may be taken as constant and equal to H; pp- The compres-

sible momentum thickness is, from equations (23) and (35),

.te )0-602 -.EQ)O-S].]. x0-823
te

Seo\0-177
o)

0.0lSS(
_ tref

(36)




14 NACA TN 4154

or, alternately, for the same external Mach number and stagnation condi-
tions,

1 .

6 one , \T-2158
c = = . h
Brp (5.2155) 0.520 (37)

The skin-friction relstion for a cone is, from equations (14), (24), and

(35), &
(L{'..
- -0.22 , . \0.571 . 0.452 )
Cp = o.1oz<Me — (JQ) (38)
£ Yo trer te
and
c _ _
—£988 . (0.520)70-268 < 1,192 (39)
f,fp
From equations (27) and (35),
-0.22 0.571,, 0.452
Méaox) (te ) (to) -2/3
St = 0.051L — Pr) (40)
( Yo bref te (Br)rer
and
~-

(St)cone _ Cgcone

T = T - 1.192 (41)

These resulis for the ratios of cone to flat-plate quantities agree
very well with Gazley's value of 1.176 (ref. 18) and Van Driest's value
of about 1.15 (ref. 17).

Stagnation-~-Point Flow

The quantities of interest in stagnation-point flow are womentum
thickness and heat transfer. TFor stagnation-point flow it is assumed
that the velocity along the surface varies linearly with the distance
from the stagnation point and that static-and total temperatures are
equal for the region of interestl' This treatment of turbulent stagnation
flows is certainly somewhat fictional. Turbulent flow will be obtained -
only after the transition point and therefore not at the stagnation
point itself. Also, because of the assumption of equal static and total
temperatures in the inviscid flow, only a portion of the subsonic part of .
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the stagnation region can be treated by using the simple formulas that
follow. These relations are included, therefore, only as a gulde to
what might be expected from turbulent flow over blunt bodies.

Two dimensional. - With the previously mentioned assumptions, equa-
tion (20) yields for momentum thickness:

0.823/ t, \0.602
(0.01173 e 0644 _
B+1 tref
6= 0.177 (42)
due
ax
Vo

while the Stanton number, from equations (27) and (42), is

0.571
0.044[vo(B + 1)]0-22 ( fe ) -2/3

Yref
St = Pr
0.22 (Pr)rer

due 0.44
(dx) x

At the stagnation point, the Stanton number is seen to be infinite. It
is perhaps more Instructive to examine the heat-transfer ccefficient,
since the latter is more directly involved in calculating the heat-
transfer rates:

(43)

0.571 0.78
9 ___ - 0.044 -2/3 0.22( te (Eg) 0.56
y—— (St) peue= 0.0440,(Pr)pefr [vo(B+ 1)] T = X

(a4)

The heat-transfer coefficient and, therefore, the heat-transfer rate at
a turbulent stagnation point are zerc. This is a consequence of using
the Ludwieg-Tillmann skin-friction relation at zero veloclity where it is
certainly inspplicable.

Axisymmetric. - For momentum thickness with R = x, equation (20)
becomes

0.602
( 0.01173 )0.823 te <0.644
B + 2.2155 trefr

6 = 0.177 ' (45)
dU.e

ax
Yo
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and the heat-transfer coefficient from equations (27) and (45) is

-2/3 0.571/du_\0.78
—9 . 0.044__pe(Pr)reé [vo(B + 2.2155) 022 (—-— (——e-) x0-58
hay - by ' tref dx

(46)

These stagnation region results, both two dimensional and axisym-
metric, are in very closes agreement with the results of Van Driest (ref.
18) . The velocity gradient due/dx that appears in equations (43) to

(46) is evaluated.for supersonic flow with Me > 2 from the relation

due 2 p.o
dx  RgpV¥T < PsP) (47)

which was derived for bodies having finite nose curvature based on the
assumption of a wmodified Newtonian flow 1n the nelghborhood of the
stagnation point.

CONCLUDING REMARKS

An spproximate method for the calculation of compressible turbulent
boundary layer with heat transfer and arbitrary pressure gradient has
been presented. The method as applied to insulated surfaces is quite
well fouhded, but for noninsulated isothermal surfaces 1t depends on &
nugber of speculative assumptions. These assumptions, however, are
qualitafively proper, and it is hoped that they will also yleld reasonable
guantitative results. The proposed method of estimating the location of
separation for flow with adverse pressure gradients should be adequate
for flows where the separation is characterized by a rapid drop of the
skin friction over a short longitudinal distance.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Chio, September 12, 1957
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f(Hi)}
g(H:)

g Ei = d; = P

o

Rep

5t

APPENDIX A

SYMBOIS
skin-friction parsmeter, eq. (14)
veloclty of sound
expouent of Mach mumber in eq. (17)

local skin-friction coefficient

functions in Maskell's moment-of-momentum equation (ref. 3)

form factor, 5%/6

enthalpy

Mach number

local external Mach number
power of power-law profile
Prandtl nunber

pressure

heat-transfer rate

radius of axisymmetric body

radius of curvature at stagnation point of blunt body

q
Stanton number, peue(haw Th)

temperature

transformed longitudinsl velocity
longitudinal velocity
transformed normal velocity

normal velocity
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X transformed coordinate along surface
x coordinate along surface _ T
Y transformed normel coordinate
¥ normal coordinate

ratlo of specific heats £
A upper limit of integration in momentum of moment-of -momentum g%

integral equastions o

5% displacement thickness
e momentum thickness )
6 cone half-~angle, deg
v kinematic viscosity _
p mess density
T shear stress iun boundary layer
¥ stream function )
Subscripts: -
aw adiabatic wall
e local flow outside boundary layer (external)

fp flat-plate value
i incompressible _ _
ref evalusted at reference condition
8 local stagnation value

8p stagnation-point value

tr transformed

W wall or surface value

0 free-stream sgtagnation value
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1 initial condition

© free-stream (static) value

19
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APPENDIX B

DERIVATION CF TRANSFORMED BOUNDARY-LAYER INTEGRAL EQUATIONS
For steady compressible flow with axlal symmetry and s Prandtl number
of 1.0, the time-averaged continuity and momentum equatlions may be written.

Continuity:
d(pu dpv pu 4R
Sl Bpr .2 B0 (31)
Momentums
du _ du o7
pu 3 +ov 5y = " %E + 5 (B2)

For a two-

The radius of the body R 1s s function of x alomne.
dimensional flow, the R term in the continuity equation is not involved.

Stewartson's Transformstion

The velocities in equations (Bl) and (B2) can be replaced through
the definition of a stream function:

y . DR
Yo p
0
(B3)
Y. - _ BVR
X pO

The coordinaetes x and y sare transformed by the following form of
Stewsrtson's trausformstion:

0]
? (B4)
y
a
Y = 3% gL dy
0 © J

2597,
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The transformed coordinates are now represented by capital letters (X and
Y), end the subscript e refers to locel conditions at the outer edge of
the boundary lsyer (external). The subscript O refers to free-stresm
stagnation values.

Applying equations (B3) and (B4) to equations (Bl) and (B2) results
in the following system: -

U dR
Ug +Vy +5 35 =0 (Bs)

hg
UUy +VUY—UeUeX%+————Ea— (B6)

where the stream function has been replaced by the transformed velocities

R = YY
(B7)
= —YX

The relation between physical and transformed loungitudiunal velccities is

a
Ur=u—g

The integrand of the momentum integral equation is obtained by sub-
tracting equation (B6) from the product of equation (B5) and the quantity
Uz - U. This results in

[U(Ue - U)]x + [V(Ue - U)]Y + Uy [Ue -U +Up (E—Z - )] +

U dR 1 ot

(Ue-U)§ﬁ=-—;;—(a¥&' (88)

Po 7= 5o

Po

If equation (BB) is integreted with respect to Y between the limits
Y=0 and Y=A vwhere A 1s a constant distance normal to the trans-
formed surface sufficiently large so that the conditions U = Ug and

hg = hy can both be satisfied, there results
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(&)

— . ay

80ty Opy dUe 24w g 20 Bo +9trdR Ty

& "0 X 1 Btr R &™ =~

v0 (5)&2)
Po/\8g/ ¢
(1)
where

A
U U
etr’f ‘ﬁ‘( -—U) &y (3)
0 e e

and

Hy = (4)
The quentity H; is the transformed form factor for the boundary layer

over an insulated surface. For a noninsulated surface, the transformed
displacement thickness 1s written:

R SR

while the transformed momentum thickness is still given by equation (3)
(see appendix C, ref. 12).

The moment-of -momentum equation is obtained by multiplying equation
(B10) by Y and then integrating with respect to Y between Y = 0 and
YT = A:

259%
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s (A A
< nﬁ%(l-t}]—e)dx+uef Y_%[v(l-%)]cﬂ

0 o
0 £ au, A
e dR U U e U
TR X Yﬁg<l-ﬁ;)dx+UeE / Y(l—@)dY
o] 0
A A
h
. Y(_";_ )a_j{ - - L f Y%Ed’f (810)
h Y
0 0 Pe 0

&)
Pa — | =—
0 Pg \%
The procedure of reducing this equation to ussble form is that of Tetervin

and Iin (ref. 2) except for the present consideration of noninsulated
gurfaces. This involves evalusting the integrals in equation (B).O) with

the aid of the power-law assumption U/Ue = (Y/A)N and then reverting

to the form factor H; by using the power-lsw relation Hy = 1 + 2N.
The result is .

am, 1 [H1<H1+1>2<Hi-1>] . : A(hs )
S N g P 0 J \Bo T
2(g; - 1) A rng
" EZ(E, + 1)6Z, fo (ho ) 1) T
(2_1) 1
';wH:L . [Hi' (Hi+l)f %a(%)] (2)
€ o]

fo 7o (ao) U

An important result here is that the moment-of-momentum equation is in-
dependent of radius variatlon so that equation (2) holds for both two-
dimensional and axisymmetric flow. This was pointed out in reference 2.
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APPENDIX C

ADAPTATION OF ILUDWIEG~TITIMANN TURBULENT SKIN-FRICTION
RELATION TO COMPRESSIBLE FLOW

The Iudwieg-Tillmenn skin-friction relstion for incompressible flow
is from reference 4:

l'rwz = 0.246 o~1-561H p -0.268
2 PY%

(c1)

where Reg = uee/v. The adaptation of this relation to compressible flow

follows the procedure used by Eckert (ref. 10) for the Schultz-Grunow
relation. With the skin friction expressed in terms of a Reynolds number
based on x, the fluld properties in the skin-friction relstion are evalu-
eted et a reference enthalpy. This reference enthalpy of reference 10
was selected so as to give good agreement with the skin-friction results
of many lavestigstions over a wide range of flow conditions. The first
gtep then is the conversion of equation (Cl) to x dependence. This will
be done by using the momentum integral equation with zero pressure gra-
dient., The reference enthalpy method is then applied, and the resultant
relation 1s recounverted to a Reynolds number based on 6, again by using
the momentum integral equation with zero pressure gradient. The zero
pressure gradient momentum integrsal is

-00268
a6 _ Cr -1.561H <uee)
= =73 =0.123 e < (c2}
Integrating equation (C2) with constant E yields
4 \-0.268 1/1.268
8 = [(1.268) (0.123 )e~+-561H (Te) x] (c3)
Substituting equation (€3) in equation (C1l) then ylelds
-0.211
Tw -1.238 [2e*
T = 0.364 e = (c4)

Z PUe

289%
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By following the procedure of Eckert (ref. 10),

T -1.23 %) -0.211

1__1"’_5 = 0.364 e B (vex ) (cs5)

= P Ug ref

2 Fref

or
-1.23H; ,u x -0.211 £

= 0.364 ¢ (\,—e—) o (cs)
5 Pels ref e

The subscript ref indicates that the quantities should be evaluated at
the reference enthalpy defined by the relation

%=%(E+1)+0.22(2—21- ) (c7)

It is customery to demonstrate the adequacy of a compressible skin-friction
edaptaetion by comparing the resultant ratio Cf/Cf ,i Wwith experimental
veriations. The quantity Cr ,1 is the value of skin-frietion coefficient

that would have been obtained without the compressibility adeptation.
Thus, from equastions (C4) and (C6),

==
Cr,1 Yref trer

For flow over an insulated surface with the adisbatic wall temperature
equal to stagnetion tempersture (Prandtl pumber, 1.0} with viscosity pro-
portional to tempersture and Yy = 1.4, equstion (C8) becomes

C -0.578
—L o (1 +0.144 M)
Cr,1

This relation agrees very well with the relations of Eckert (ref. 10) and
Pucker (ref. 15), as seen in figure 4, which in turn are in excellent agree-
ment with availsble experimental data.

(co)

For use in the present method, equeition (CG), which now Includes
compressibility effects, 1s reconverted to a Reynolds number based on
momentum thickness. The resultant relation is
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T
== W
Cf—l 2=O.246e

3 Pele

-1.561H; (uee )-o.zss ( te )1.268 (c10)

Vyef | tref

Since, in the present method, the equations are solved in a transformed
plane (as transformed by the Stewartson transformation), equation (c10)
is transformed similerly with the assumption of a linear viscosity-
temperature relation. The result is

-0.268 0.732 0.268
Cp = Tw = 0,246 e-l'sslHi (Meaoetr) < te ) <'be)
(6)

T 2 v Trer to
7 Pele Y & 0

While the sssumptions made in the adeptation described here are many,

it is felt that the result is an adequate description of skin-frictlon
coefficient for a turbulent boundery layer with pressure gradient.

259%
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APPENDIX D

FURTHER INTEGRATION OF MOMENTUM INTEGRAL EQUATION

The momentum integral equation (12) is

Oy  Byp M f%r ar
= -x-Me = (2+Etr)+—-E=A (p1)
where
_ and. ~0.268 + 0.732 + 3.268
A = 0,123 o-1+56181 (Mevo tr) ( e ) (__g) (14)
0 brer to
and where
hy
By following Maskell (ref. 3}, let
k N
Moty
® = <“‘—o—
and - (D2)
t=A (Meaoetr>k
Vo /

The substitution of equations (D2) into (D1) yields

B+ g 8= +x [g-%%(ﬂw Exrs ]]:)] (3)

Maskell found that, for incompressible flow, the right side of equation
(D3) could be represented by

@ dUe
0.01175 - 4.2 5 7% (D4)
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with k ‘teken as 0.2155. Since, for incompressible flow, Hyr = Hi, the
second term of equation (D4) implies that

2
(1 + k) (Hi +ﬁ_—§) = 4.2 (D5)
It then follows that
by 2 +k by
(1 +x) [Hi +<% - 1) H,pp + 75| = 4-2 - 1.2155 By 1) By,rp

(p6)

go that equation (D3) msy be written as

£ \0.732/4 3.268 am
ae ® dr e e ® e
T + 1.2155 R ax = 0.01173 ('bref) (tO) - B ﬁ; —_— (D7)

where

B= 4.2 + 1.2155 Hi,fp'@—‘é - ) (p8)

The values of B given by equation (D8) with Hy ,rp = 1.3 are in very

good agreement with those for laminar flow (ref. 5) and those estimated
by Skopets (ref. 19) for turbulent flow. '

Equation (D7) is a first-order linear equation for © =and can be
integrated to yleld

x < e )0.752
(@ L-2255) . (e R1.2155)x1 - 0.01173 B \Pref gle2155 4,

M ao\5- 268
&)
*1 (D9)

where

acfir 0.2155
@ = B¢p <¥e Vo ) (D10)

259%
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Figure 1. - Comparison of present moment-of-momentum relation with that of Meskell (ref. 3).
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